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Abstract 

Despite advancements in deep learning, existing semantic segmentation models exhibit suboptimal 
performance under adverse weather conditions, such as fog or rain, whereas they perform well in clear weather 
conditions. To address this issue, much of the research has focused on making image or feature-level representations 
weather-independent. However, disentangling the style and content of images remains a challenge. In this work, we 
propose a novel fine-tuning method, 'freeze-n-update.' We identify a subset of model parameters that are weather-
independent and demonstrate that by freezing these parameters and fine-tuning others, segmentation performance 
can be significantly improved. Experiments on a test dataset confirm both the effectiveness and practicality of our 
approach. 
 

 

1. Introduction 

Semantic segmentation models typically perform well in 
clear weather conditions. However, their performance 
significantly degrades under adverse weather conditions, such 
as rain or fog. Extensive research has focused on separating 
image or feature-level representations to handle this issue, but 
fully disentangling the style (e.g., fog and rain) from the image 
content remains difficult. To address this challenge, we 
introduce a novel fine-tuning method, freeze-n-update, aimed 
at improving semantic segmentation in adverse weather. We 
posit that not all model parameters are affected by weather 
conditions and demonstrate this using kernel wise and layer 
wise comparisons across multiple backbone architectures. 
Utilizing this property of parameters, we enhance 
segmentation performance. Both qualitative and quantitative 
results corroborate the validity of our assumption and the 
efficacy of the proposed fine-tuning method. 

 
2. Method 

In this section, we demonstrate the practicality of freezing 
a certain percentage of parameters. We first outline the training 
details, including the datasets and the existing model we 
adopted. Then, we delve into an in-depth analysis of the results 
from three different types of models. Finally, we present the 
details of the proposed new fine-tuning method, underscoring 
its novel features and advantages. 

 
2.1 Training details 
Dataset & Model: Due to poor visibility in adverse weather 
conditions, both models and humans struggle to obtain high-
quality ground-truth labels. Moreover, we aim to identify 

which model parameters are sensitive to changes in weather. 
Therefore, we hypothesize that "only certain parameters are 
affected by weather changes." Our research requires a dataset 
with consistent content but varying weather conditions. We 
use the synthetic dataset Foggycityscapes[1], which adds a 
realistic fog effect to the fully annotated Cityscapes[2] dataset. 
Similarly, to assess the generalizability of our hypothesis, we 
use the Raincityscapes[3] dataset, which enables us to test our 
approach under different weather conditions, such as rain. We 
utilize DeepLabv3+[4], a stable and widely used model, to 
apply our new fine-tuning method. To verify the method's 
generalizability, we analyze parameters using two different 
backbone networks, ResNet101[5] and MobileNet[6], which 
allows us to assess effectiveness across varying architectures. 
 
Training details: In the Foggycityscapes dataset, the beta value 
determines the amount of synthesized fog, with a higher beta 
value resulting in thicker fog. Here, three beta values are given: 
[0.005, 0.01, 0.02]. We fine-tune all parameters of the model 
for each beta value to observe changes as the fog density 
increases. Additionally, we fine-tune the model using the 
Raincityscapes dataset. For convenience, we will refer to the 
models fine-tuned at each beta level as foggy-beta0005, 
foggy-beta001, foggy-beta002, and the model fine-tuned for 
rain as rainy. Finally, we train the model on a clear weather 
Cityscapes dataset to serve as a reference model for 
comparison. This model will be referred to as clean. 
 
2.2 Analysis parameters of trained models 
We analyze how many parameters are shared among the 
different fine-tuned models through two types of comparisons: 



 
 

  

kernel wise and layer wise. For example, in a convolutional 
layer with parameters defined by (out, in, kernel size) = (32, 3, 
3 x 3), the parameter tensor's shape is (32, 3, 3, 3). Kernel wise 
comparison involves comparing each individual kernel, with 
a shape of (3, 3, 3), to the corresponding kernel in another 
model at the same location. Layer wise comparison involves 
comparing the entire parameter tensor of one layer, also 
shaped (32, 3, 3, 3), to the equivalent layer in another model. 
The entire process is illustrated in Fig. 1. 

 
(Figure 1) Illustration of our analysis method 

With Normalization: Before comparing the parameters, we 
normalize all parameters to follow a normal distribution to 
handle outliers more effectively. This involves subtracting the 
mean of the parameter values and dividing by their standard 
deviation (Eq. 1). 
 

𝑃𝑃𝑡𝑡,𝑐𝑐,𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑃𝑃𝑡𝑡,𝑐𝑐,𝑛𝑛 −  𝜇𝜇𝑡𝑡,𝑐𝑐

𝜎𝜎𝑡𝑡,𝑐𝑐
,        (1)  

Where P represents a tensor of parameters, and t denotes the 
dataset type, which includes {clean, foggy-beta0005, foggy-
beta001, foggy-beta002, rainy}. The variable c indicates the 
comparison method, either {layerwise, kernelwise}, and n is 
the index of the tensor. The term 'normalized' refers to 
parameters adjusted to follow a normal distribution, where μ 
is the mean and σ is the standard deviation of the parameter 
distribution. Using these normalized parameters, we calculate 
the number of differing parameters between the models 
trained on the clean Cityscapes and those trained on the foggy 
or rainy Cityscapes. This calculation is performed according 
to Eq. 2. 
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,  (2) 

 
Here, X is a tensor representing the differences at the same 
positions between parameters of fine-tuned models and the 
clean model. Each element of X is set to 1 if the difference is 
smaller than a specified threshold, indicating similarity, and 
$0$ otherwise. Thus, X identifies where elements of the fine-
tuned models closely match those of the clean model.  
T represents the threshold value used in our analysis. We set T 
= 0.01 for models using ResNet101 as a backbone and T = 0.1 
for those using MobileNet. These thresholds are adjusted 
according to the different learning rates of the backbones to 
ensure that the comparison results are consistent across 
models. By applying these thresholds in Equation 2, we 
compare the parameters of the fine-tuned models to those of 

the clean model, identifying where the parameters have not 
significantly deviated. we calculate how many ‘1’s are in the 
tensor and then divide the sum by the total number of elements 
in order to get a ratio of the tensor.  
 
Analysis result: Figure 2~5 shows the comparison results of 
models over two types of backbone, ResNet101 and 
MobileNet, via two comparison methods. The ratio of 
classifier layers which is the rightmost part of four graphs is 
much lower than others. This leads us to conclude parameters 
in classifier layers are affected by weather conditions more 
than the parameters in the other layers. Moreover, the shallow 
part of layers, accurately convolution layers and 
batchnormalization layers are also affected by the weather 
conditions.  
 

 
(Figure 2) Layer wise comparison result in ResNet101 

 
(Figure 3) Kernel wise comparison result in ResNet101 

 
(Figure 4) Layer wise comparison result in MobileNet 

 
(Figure 5) Kernel wise comparison result in MobileNet 



 
 

  

2.3 New finetuning method 
Based on the results of our parameter analysis, we identified 
specific layers that react sensitively to changes in weather 
conditions. We focused on the top 50 layers showing the 
largest variations in parameters for each beta value under 
foggy and rainy conditions. Our comparison sought to 
distinguish between layers with consistent changes and those 
with significant fluctuations. We found that the layers most 
affected were the front-end convolutional layers, the batch 
normalization layers (BN) across the entire model, and the 
classifier section at the model's end. Consequently, we propose 
fine-tuning only the first 10 convolutional layers along with 
the BN and classifier sections in ResNet101, while freezing 
the remaining parameters. Should the backbone network 
change, the number of convolutional layers adjusted for fine-
tuning should be modified accordingly. 
 
3. Experiments 

We use SGD as the optimizer with DeepLabv3+ as the 
model framework. The learning rate is set to 0.1 for MobileNet 
and 0.01 for ResNet, respectively. Additionally, we adopt a 
polynomial learning rate decay with a power of 0.9. During 
the training process, the input images are resized to a 768 x 
768 size and randomly flipped horizontally. We set the batch 
size to 16 and the output stride to 16. All experiments are 
conducted using the same hyperparameters as mentioned 
above. Furthermore, we test the trained models on the real-
world Foggy driving[1] dataset to evaluate their performance 
under practical conditions. We used the mean of class-wise 
Intersection over Union (mIoU) as the evaluation metric. 
 
3.1 Results 
The performance of our proposed fine-tuning method is 
illustrated in Table 1. In the table, "CV" denotes the 
convolutional layers at the front of the model, while "CL" 
stands for the classifier. Generally, adapting a model to 
different weather conditions involves methods such as fine-
tuning only the classifier or the entire model. However, our 
fine-tuning method outperforms both of these approaches. 
These results suggest that focusing on a subset of parameters 
sensitive to weather conditions is more effective than simply 
retraining the entire model. Additionally, while there is a 
method that fine-tunes only the front part of the model,[7] our 
approach—which includes learning both the batch 
normalization (BN) and the classifier sections along with the 
front part—achieves higher performance. 
 
<Table 1> Performance comparison of fine-tuning methods 

 

 
 
Our method offers numerous benefits, even though it utilizes 
far fewer parameters than full-model fine-tuning. By 
employing this technique, memory usage is optimized as most 
parameters remain frozen. This method also enables the model 
to adapt to various weather conditions by altering only a small 

set of parameters. Previously, we verified that only some 
parameters undergo significant changes under both rainy and 
foggy conditions. 
 
The difference between the prediction results of traditional 
methods and our method is depicted in Figure 6 and Figure 7, 
where the top left image is the input image, and the top right 
image represents the ground truth labeling. On the bottom row, 
the left image shows the prediction by our fine-tuned model, 
while the right image depicts the prediction of a model with 
full fine-tuning. While existing methods struggle to recognize 
the sky, a class highly sensitive to weather changes, in foggy 
conditions, our model accurately identifies it even under such 
challenging conditions. 
 

 
 

(Figure 6) Visualization of Segmentation Prediction 
 

 
 

(Figure 7)  
 
4. Conclusion 

We have proposed a new fine-tuning method for vision 
recognition tasks in adverse weather conditions. Additionally, 
by comparing parameters of models trained in both clean and 
adverse weather, we have identified which parameters or 
layers are affected. Our study can be helpful in developing 
other fine-tuning methods or in studying domain adaptation 



 
 

  

methods. Also, our proposed method demonstrates better 
performance than existing methods. These results suggest that 
utilizing the identified parameter characteristics can be 
beneficial. 
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